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PREFACE

The essential ideas of this paper, the introduction of mixed
strategies and the modification of Everett's [5] and Pugh's [9]
double Lagrange multiplier method for constrained min-max problems,
have had a checkered career., .

These ideas arose from a computational device that completed
the solution (or appeared to complete the solution) of the ABM/
Shelter deployment problem formulated by Pobert Xupperman. The
device was a powerful one and I promptly applied it to a much more
complex and interesting version of the same problem. The resulting
offense and defense solutions were thoroughly convincing.

What has followed this initial discovsry and application has
been a succession of attempts to explain why the device, now
christened the modified double Lagrange multiplier method, apparently
works. The first attempt appears to me now to have been quite
naive. It foundered with the discovery that a presumed minimum was,
in fact, a local maximum. The second trip to the drawing board
produced & saddle-point theorem which works if the number of feasible
strategies for the maximizing player is finite. However, all of
my attempts to extend this theorem o a centinuum of strategies
exploded in one way cr another. Worse, the saddle-point theorem
could not provideia basis for my method unless it could be so
extended.

This paper follows an entirely different route from these
earlier attempts. I am frankly indeuted o Jwen (7} whose paper
contains the essential step I have borrowed ard put to my own use.
The results that I have (I hope) proved are net as strong as I had
initially expected, Nevertheless they should provice a sufficient

id




basis for the more grandiose applications of the modified double
Lagrange multiplier method that I have attempted elsewhere.
I am greatly indebted to a number of my colleagues who

patiently stuaied the confused logic and opaque language of several
previous drafts of this paper. In particvlar, the comments of

James T. McGill of IDA and James E. Falk of RAC led to the correction
of several errors and helped me to improve the exposition throughout.
The research reported in this paper was supported by the Office of
Civil Defense, Department of the Army under Contract DAHC 20-70-C-0287
with the Institute for Defense Analyses.

Edward S. Pearsall
May 1971
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A LAGRANGE MULTIPLIER METHOD FOR
CERTAIN CONSTRAINED MIN-MAX PROBLEMS

I
INTRODUCTION

Constrained min-max problems are constant-sum two-person games in
which the maximizing player enjoys the advantage of .oving last
and both players select strategies subject to separate side condi-
tions. Problems of this general form are natural archetypes for a
variety of defense rescurce allocation models., Probably the most
common defense application is to the allocation among cities of
shelters and antiballistic missiles. The objective of the defense
is to minimize the casualties that may be inflicted by an enemy
with a given arsenal of ballistic missiles and a full view of the
defense allocation. Among the authors who have formulated such
models as constraired min-max prdblems are Rolert Kupp2rman,

Smith 7127, Eisen [4], anl Oven [7]. An excellent mathematical
survey of min-max problems in general has beer. prov1ded by

Danskln [3].

) Since the minimizing player is deprlved of the means to imple-
ment @ mixed strategy, constrained min-max problems do not always
p0sSsess equilibrium pairs, i.e., strategies that are simultaneously
optimal against each other. This inconvernient characteristic

separates <in-max problems from the well-developec body of theory
for games with sacdle-point soiutions.  Methods designed to locate 4
saddle-points will succeed only fortuitously in solving min-mex ' 7
probliens. : - ’

‘Eq:z_élly izpcrzant, the absence of saddle-point solutions pre-
veeis The straightiorwars use of lagrange - =ultipliers in dealing
with the pla)ers' :ono;raip\,. tisvertheliess, seversl procedures
etploying Lagrange sultipliers (or, equivalently, & convex duslity

_,reor~*) have been proposed for Din-max problems with constraints,
Brar [ } ard Danskin (3] grcxe Lagrange multiplier thecreas in
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connection with their use of directional derivatives. However, the
constraints pertain only to the minimizing plaver and directional
derivatives typically lead to cumbersome processes for calculating
solutions in applied work. A more workable approach is the "double"
Lagrange multiplier method proposed by Everett [5] and Pugh {81].
Unfortunately, the circumstances under which the method might

yield optimal solutions are not described by Everett and Pugh.
Moreover, their method is clearly capable of yielding strategies
that are not optimal sclutions to constrained min-max problems,

Pugh attempts t¢ deal with this difficulty by cffering "verification®™
techniques fhat, in effect, provide bounds for solutions. However,
these bounds are of doubtful value in aprlied work. Most recently,
Owen [7) nas employed & convex duality theorem to transform a con-
straine¢ min-max problem into a pure minimization problem. Unfor-
tunately, (wen £ails to exhibit solution strategies for the
maximizing player. ,

In this paper, we shall employ Owen's procadure to obtain a
specializétion.of Everett and Pugh's double Lagrange multiplier
method. The method applies to problems in which the maximizing
player's strategies may be segregated by tactics and probabilistically
miied‘ For exampie, in aé:acking a city dafended by antiballistic
missiles; the maximizing player might eaplcy strategies designec to
leak through, suppress (by desiroying the rédars), or exhaust the
defense--or he may choose not t¢ atrack the city et ail. Normally,
the baximizing player wculd not be indifferenz between two
strategies associated wizi the same tactic, i.e., having decided
to, say, exhaust the defense, the maxinizing player will typically
find that there is a single best ruaber of warheads for this pur-
pose. On the other hand; a Clever defense way 1&évg the maximizing
player inditférent between the best stiategles associaved with
two or more distinct tactics. For example, en=ib2llistic missiles .
may have been installed in the citv in numbers :ust sufficiers te
leave the maximizing player indifferent betweer exhéusting the

~ defense and not attacking the civy at all. We shail allow the

-
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maximizing player to resolve such dilemmas by probabilistically
mixing strategies associated with different tactics.

This is a novel formulation for constrained min-max problems
and requires some elaboration which we shall provide in Section II.
In Section III & convex duality theorem is employed to derive a set
of sufficient conditions for solutions to a class of constrained
min-max problems with mixed struiegies. An even stronger set of
sufficient conditions may be derived if certain functions are
differentiable and cuasi-convex. These conditions are derived in
Section IV and provide the basis for the presentation of the
modi€ie. double Lagrange maltiplier method (Section V). 1In the
concluding Sections the characteristics of constrained min-max
problems to which the method is best suited are described and a
simple ABM/shelter denloyment problem is solved to provide an
illustration,




II
THE CONSTRAINED MIN-MAX PROBLEM (WITH MIXED STRATEGIES)

By convention, the outcome of a constant-sum two-person game 1is
measured as a payoff to one of rhe players from wnhich the other's
loss differs, at most, b, a constant amount, If we let X and Y
denote strategies for the maximizing and minimizing players, re-
spectively, then this payoff (to the maximizing player) may be
represented by the real-valued function H(X,Y). The constraints
on the players' uses of resources mey be represented by the inequality
systems C(X) € ¢ and B(Y) < b where C(X) and B(Y) denote real-valued
vector functions and ¢ and b are vectors of the available quantities
of the players' resources. Moreover, the players are restricted in
their selection of strategies to the elements X and Y of the sets
S and T. The function H is defined over the product set S x T, the
vector function C is defined over S, and B is defined over T.
(Throughout the paper vectors are taken to be row vectors unless
marked with an apostrophe to indicate the transpose.)

A general statement of the constrained min-max problem is to
find a strategy X° for the maximizing player and a strategy ¥°
for the minimizing player that satisfy the requirements:

1. The strategies are feasible for boch players: XOGS, C(XO) <c
and YOGT, B(Yo) < b.

2. The strategy X° maximizes the payoff funcrion given the strategy
y© subject to X€S and C(X) < c:
HOC, YY) > H(X,Y°) fer all X€S, C(X) < ¢

’ = ’ - ’ = (.

3. The strategy Y’ minimizes the maximum payoff in X€S, C(X)

subject to YET and B(Y) < b:

HOC, ) ¢ sup {HOLY) | Xes, CO) < ¢} for all ver, B(Y) g b.

1A
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(Note that a constrained max-min problem may always be converted to
& min-max problem with the same constraints simply by reversing the
sign of the payoff function.)

Mixed strategie¢ are not conventionally believed to serve any
useful purpose in the mathematical theory of min-max problems. The
minimizing player cannot implement probabilistic mixes of strategies
and the maximizing player appears to gain nothing by using them,

In short, it is impossible to visualize any useful function of mixed
strategies in an actual play of the game. From this observation it
is easy to presume that mixed strategies for the maximizing player
can have no role in the mathematical treatment of min-max problems.
This has been the presumption of virtually all previous work. (Note,
however, that Pugh [%] and Owen [7] in their work replace the payoff
function with its concave envelope. This device implicitly admits
mixed strategies since there may be points on the concave envelope
that corresgond only to weighted averages of points on the real
payoff function. These payoffs can be achieved only by probabilis~
tically mixing the maximizing player's strategies.)

In standard game theory the introduction of mixed swategies for
both players serves to insure the existence of a saddle-point solu-
tion. That is, there exist mixed strategies that constitute an
equilibrium pair. The introduction of mixed strategies for just
the maximizing player is not alone sufficient. The resultant game
will not possess a saddle-point unless the min-max problem had an
equilibrium pair of strategies in the first place.

Nevertheless, mixed strategies for the maximizing player may be
made to serve a useful purpose by the interesting expedient of re-
defining the concept of an equilibrium pair and then exhibiting
a correspondence between such redefined equilibrium pairs and
solutions to constrained min-max problems. A slightly modified
version of the "seesaw" problem provides a simple illustration of
this use of mixed strategies. The maximizing player chooses a point
between the right end, X=1, and the left end X=-1, of a seesaw but
he may not sit directly over the fulcrum, i.e., - 1 ¢ X < 1and X # 0,

5
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The minimizing player chooses the angle of the seesaw, - /2 € Y < 11/2.
The payoff is the height of the maximizing player's seat above the
fulecrum, H(X,Y) = X sin Y. This problem has no equilibrium pair of
strategies (XO,YO). However, a mixed strategy may be used to
demonstrate that Y° = 0 is optimal for the minimizing player. Two
tactics may be descerned for the maximizing player by observing that
either X = - 1 or X =1 is optimal for the maximizing player for any
Y (both are optimal if Y = 0). Let HE(Y) anc Hﬁ(Y) be the payoffs
that result from a choice of the left and right ends of the seesaw,
respectively. Then, H¥(Y) = - sin Y and HE(Y) = sin Y. A probabil-
istic mix of these two strategies yields the expected payoff u(-sin Y)
+ (1L -u) sin ¥ = (1 - 2u) sin Y where 0 < u < 1. The probability

u® = .5 and the strategy Y° = 0 constitute an eguilibrium pair in

the restricted sense that:

(1 - 2% sin ¥ 2 (1 - 2u) sin ¥° for ali J<u

HA
[=]

and

(2 - 2°) sin ¥° < (1 - 2.°) sin ¥ for all - 1/2

WA

Y <1/2.

The maximizing player's mixed strategy is to sit on the right end of
the seesaw (x° = 1) with probability.5 (u° = ,5) and to sit on the
opposite end of the seesaw (Xo = -1) with the same probability .S

(1 - u® = .5). That ¥Y° = 0 satisfies Statement 3 of the definition

of a solution to the min-max problem follows from the fact that:
(1 - 2u°) sin Y < Maxy {X sin Y |-l <X<l, X # 0}
for all - NI/2 < Y < /2.

Eicher X° = - 1o0or X° =1 satisfy Statement 2 and both (X° = -1,
v = 0) and (X° =1, ¥ = 0) satisfy the feasibility requirement,
Statement 1. Now, the mixed strategy we have derived for the
maximizing player is completely superfluous so far as playing the
seesaw game is concerned. Its function in the argument above is
solely to permit us to identify an optimal strategy Y° for the
minimizing player. This approach to min-max problems will be



formalized and extended to problems with constraints in the remainder
of the paper (The solution to the seesaw problem is derived with
directional derivatives in Danskin [3].)

For the special class of problems dealt with in this paper, we
assume that the maximizing player's strategies may be assembled by
tactics and that strategies associated with different tactics may
be prcobabilistically mixed. Let j = 1,...,n be an index of tactics.
For each tactic j we denote:

Sj a set of strategies Xj
Hj(xj,Y) a payoff function
cj(xj) a resource vector function for the maximizing player.

“j a probability of use.

We also assume:
1. The strategies xj are representable as nonnegative row
vectors of real numbers, i.e., S5 ={X in el x, 20} .
2. The resource vector functicns are linear, i.e., c.(x.) = xjAj
~ where A is a real matrix of appropriate dimensions.
3. The: systems XJ > 0, XJA < ¢ all have at least one solution,

4. The functions H. (x ,Y) are finite valued and concave in X. 2 0.

b]
for all YeT, B(Y) < b. ‘

5. The functions u;cv ,Y) defined by:

HE(V,Y) = Supy {09 = VRIS | X; 2 > o}

are continucus in V 2 0 (AJ and X,

k]
Aj and xj.] for all YE€T, B(Y) < b.

derote the cransposes of

&. ¢ > 0.

The purpose in asSembling strategies by tactics is To prcvide ‘
funccions H;(V.Y) 3=1,...,n with convénient mathematical properties
«her Y is defined as a nonnegative real vector, Specifically, it is
generally neeessary'to define ractics in such a way that the furctions




H?(V,Y) j=l,...,n are continuous and differentiable for V 2 0 and

Y 2 0. Sorting the maximizing player's strategies by tactics usually
does little conceptual violence to a constrained min-max problem.
Indeed, useable divisions of the strategy set S are often suggested by
the structure of the problem itself and probabilistically mixing the
strategies associated with different tactics causes few difficulties
in the interpretation of solutions.

The constrained min-max problem with mixed strategies is to find
strategies X? j=l,...,n for each of the maximizing player's tactics,
probabilities u? j=l,...,n, and a strategy Y° for the minimizing
player such that:

n n
1. £520355,..n, 022 035,...,m, T O =1, 1 u‘?x‘?x\j <c
J J j=1 I j=1 I3
and Y’er, B(Y°) < b.
a o n
2, ¢ u-H-(X.,YO) > 2 u.H.(X.,YO) for ali X. > 0 j=1,...,n,
iz 4 33 = sz 330D 3=
J J
n n
u; 20 3=k,...on, ¥ us =1, T u.X.A.<c.
3= j=1 J jzl 333
noog o n
3. ¥ UJHJ'(XJ’YO) _<: Supx. T Z UJHJ'(XJ"Y)I XJ z 0 jzl’-..,ﬂ,
j=l iFiti=
n n '
u. > 0 j=l,...,n, ¥ u. =1, I u-X.A._<__c
J = J:l J j=l J 33 ‘

for all YT, B(Y) < b.

This definition is an obvious analogue of the definition of a solu-
tion provided earlier for constrained mir-max problens without mixec
strategies,

The definition incorporates expectational statements of the payoff

n Al
function, T ujﬂj(xj,Y), and the maximizing player's resource
j=1
n .
constraints, T “jxjAj < ¢. That is, the solution to the constrained
j-1 -

min-max probiem with miked strategies establishes a random process in
8



which the strategies x° j=l,...,n are played with probabilities

u? 3=1,...,n. The outcome of the game is the expected payoff

n
T u?Hj(Xg,YD) and the expected use of resources by the maximizing
j=1

n

plaver T uQXQA. does not exceed the vector of available quantities
j=l

c. However, there is no guarantee that the expected payoff will be

achieved and that the maximizing player's resource constraints will

be respected in any single play of the game. In most applications,

~herefore, it would be preferable to solve for strategies Xg j=lse.esn

n
such that if u9 > 0 then ¥CA, < ¢ and H.(XQ,YO) = % pQH.(XQ,Yp).
J J3J= 373 j=1 337

With this condition observed any play of the game must result in the
same actual payoff at a cost in resources»to the maximizing player
that never exceeds the amounts available., Unfortuna*ely, the in-
clusion of this additional vrestriction in the definition of a solution
makes mixed strategias superflucus and leaves us with a mathematically
less tractable problem. '

A sensible second-best procedure, then, is to solve for strategies
that sacisfy only Statements 1 through 3 of our definition. Whether
or not this procedure produces acceptable approximations can be
determined after the fact. Variactions in paycff and resource use ma,
pe computed and if they are small relative to the expected values,

little distertion is likely to result from sccepting them as approxi-

n ,
= u%.(x%,¥),provides a
j=1 B

useful upper bound to the solution value of the payoff function if we’

mavions. In any case the expected payoff, .

o 0y " o, ,,0 )
sad the conditicn XA, < ¢ 3ad #.00,%°) = 7 WSH.0S,Y) if i > C
1= 33 j=1 9 9 J : J

for all vactics j=l,...y0%,




IIT

SUFFICIENT CONDITIONS FOR A SOLUTION

Let V denote a vector of nonnegative real numbers whose elements

correspond to the elements of the resource vector function

n
i qujA.. Sufficient conditions for a solution to the constrained
j=1

min-max problem with mixed strategies are:

n
1. X226 j=1,...,n, u2 > 0 j=1,...,n, T

. = > K
j= j= J-l uJ 1’ GT’ 2 0

o] 2,00 s,y .
2a. H.(XS - XS > HL.(X. VA XS for a X. >0 j=1,...,n.
a uJ(xJ,y°) v"zx._J N J,y°) ' ixt 11 X5 2 0 3=1,...,

n O
2z. = S [H(X2,Y°) -v°AJ'.x‘J?'] 2 5 uglH;06,Y0) - vOaZx$’ )

5z 30 P R i3
n
for all u. >0 j=l,...,n, % wu. = 1.
3= 1=1 J
J
(s] A o n 0,0 ’
2. V1 T u?x.A. - c] >Vl v uyuX-A., - c] for all V> 0,
=1 J J2 - j_l J 3 3J -
3
n C n G ’
za. v wOHEWO,YP) + Ve’ <« T WOHE(V,Y) + Ve
j=1 J 3 - j=1 J3J

for all V> 0, Y€T, B(Y) < b.
30. B(Y’) < b
where the funcrions Hg are defined as:

= (X - VAIXS X > o}
HZ(V,Y) Sulpxj {HJ(XJ’Y) #5152

and [ }° denotes the transpose of a matrix. The numbering of the
conditions has been chosen to roughly correspond to the numbered
statements in the definition of a solution.

10



Condition 1 largely repeats Statement 1 of the definition. Non-
negative conditions on the solution value of the vector V have been

n
added and the inequalities 7 uJX3h, < c and B(Y") g b have been
- 3=l - '

deleted. The reasons for these alterations will become apparent as '
we proceed to show the origins of Conditions 2 and 3.

Condition 2, together with the relevant components of Condition 1
aay be used to show that Statement 2 of the definition of a solution

and the inequality ';l u?x?aj < ¢ are satisfied. For this demon-
j=

stration we require the Saddle-Point Theorem of mathematical program-

ming. For ovr purposes a convenient statement of the Thaorem is

the fcllowing: Let F(X) be a real-valued function and G(X) a real-

valued vector function of the strategies X in S. If the strategy

x°es and a real vector V° >0 constitute a saddle-point of the

Lagrangian function F(X) - V[G(X)]’ 1n X€S and V 2 0, i.e.,

FOX) - VOIG(X))* for all X€S

v

FX%) - vOre(x®)1’

FOC) - vor6(x®) 1" < FOx) - vIG(x®))* for all V2 0

b}

then X" saximizes F(X) in 8 subject to G(X) £ 9, i.e.,

FOC®) 2 F(X) for all Xes, G(X) ¢ O

and G(xo) < 9. The Theorex can be found in most texts on mathematical
programming such as Karlin [6]. The proof is not dependent on the
characteristics of the ser S. ' o

To apply the Theorem let:

S ={X;my 3=laeen | 452 0 3=Lieeuany uj 2 0 351y 0my

n ‘ o I
7w, =1} | | » | :
j=1 - .

11




n
F(X) = jzl ujHj(Xj,Yo)

and
n

G(X) = % XA, - c.
X) j=1u333 c

Conditions 2a and 2b may be used to construct:

n n

% ugu.(x?,y°) -V vy uXCn. -7

jo 3373 jop 37373

n n
2 % oW H(X,Y0) - VLT uXA, -]
j7p 33073 jep 37373
n
for all X, > 0 j=1,...,my u. >0 j=1l,...,n, ¥ npn. =1,
J = 4 - °=l J
J
Fron Condition 2c:

oo o o, = 0,0

z wCH. 0O, Y°) - vy W%, -7’
jmp 3373 sop 333

nooo o 6.0
< 7 uSH.OGY?) -vew WAL - <1 for all V> 0.
j=l J 3 - j-:l JJ 3 -
Since

o o oo o
X.>_Gj=l,...,!’n, u-ZGj‘—"l,...,n, TouL =landv ?_0
Jj = J = i=1 J =

we must have a saddle-point. By the Saddle-Pcint Theorem:

n n
T wH.0%,Y°) > v u.H.(X.,Y®) for all X, > 0 j=l,...,n,
soy 33773 = L. 333 i=
3=l j=1
n n
u.ZOj-‘-l,...,n, 5 'p.l.=l, z u.X.A.sc
3= j=l J j=l JJ3 3=

which is Statement 2 of the definition of a solution and

n
- 0

1] u.
5=1

(o]

XA, <c,

i3=

12



The first step of the demonstration that Statement 3 of the
cefinition of a solution is implied by Conditions 1 through 3 is to

n
exhibit a saddle~point of the quantity ¥ ujﬂg(v,Y) + V¢, From
j=l
Conditions 3a and 3b:

n n

¥ f(VO *y + VO’ < T oy H*(V,Y) + v’
i=1 ’ " 3=l

| for all YET, B(Y) < b, V2 0
and B(Y°) < b.

Condition 2b provides:

n i .
v oSO,y ¢ ety Tt ke, Y0y + Vel
j:l J 2 ' 3-':1 < J
4 n
for all U.-?;G j=l,...,ﬁ, ¥ ou, =1,
3 j=1 J
o n
So we apparently have a sadile-point of the expression T u a*(v Y)
j=1
+ V¢’ where the minizizaticn proceeds over Y€T, B(Y) < b, V2 0and
’ ' o o n ,
the maximization is raker over U 20 j=ly..ny, T uj = ). This is
' =l

the egquilibrium pair in a restricted sensc that we referred to earlier.

Since the order in which tue¢ alrisization and maximization operations

are pariormed {s immaterial whe dealing wvch saddle-points we have:
|

?. uH‘\V ‘f) + Ve -:m'\,t-‘mx ’” jiﬂl“(‘l”()«k‘lc:
izl ) .J“l

. a R
lv >0 =5 30 371, .0, ‘S “j =‘l} for all YET, B(Y) < b.
. _ 3=3 .

The next step is to thow thai ”*rvﬂax etuals Mauu Ming.

This is done by appesling o zhe'familxar Mir-Max theorem of

i3




game theory. The following statement of the Theorem approximates that
given in Karlin [6]. Let F(X,Y) be a reai-valued function of X in S and
Y in T where both S and T are closed, bounded and convex sets in g".

If F is continuous, convex in Y for each X, and concave in X for each

Y, then:

Min Maxy {P(X,Y)IXGS, Ye:r} = Max,Min,, {F(X,Y)'Xés, Yer} .

To apply the Min-Max Theorem aefine:
n
s ={u; 3=Lean |y 2 0 550 0n0n, ilu3=1},
T =;v|v > 0, Ve’ < Max, {H*s(o,?) - H.(o,y)}!,
=7 =303 3 \

and

F(X,Y) = ; M H T(V,Y) + Ve,
It is obvious that S is closed, bounded ind convex and that T is
closed and convex for any YET, B(Y) < b. Tc show that T is also
~ bounded we must recall that ¢ > 0 and that rhe functions
Hj(Xj,Y) j=l,...yn are finite valued in X. > 0 .j=1,...,n for YeT,

v

B(Y) < b. Then HMax, {H*(u,y) - H.(0,1)} < » anc the set T must be

poundei. The func:ion - JH*(v »¥) + Ve’ is clearly continuous ard
i=l _

concdve in the variables oy 3=, ... for all velues of rhe vector V.

The function is continucus ir V for any 45 )-l....,n because the
. © functions HA(V,Y) j=1,...,n sre zach ass -hed to be continuous in V.
4 .

P ' - Simce 35 > Yi=l,...,n nhe funetion 7 ugﬁ?{v,Y) + V¢’ is convex in -
B z smy 49 ' : ’
ﬂ VvV if tho tunrtzane d*fb oY) i, ... are cach cenvex functions of v,

é Choose V Qamd ¥, > G, then for an- 0 T € 1:

i}.

1_':':, = = =

pAreer € ot

1é

Wb B i
; O




H*(cv, + (1-t)V = (X. - e oy
Hevy + (1-0)V,,Y) Supxj{HJ(xJ,Y) (£V) +(1-E)VRIXS X5 2 0}

<s (XL - XX : -t
< upxj{tHJ(XJ,Y) tVIAXS X 2 o} + Supxj {(1 £)H;(X55Y)

- (ORI 2 0} = tHE(V),Y) + (1) HI(V,,Y)

which proves convexity.

Since the conditions of the Min-Max Theorem are met for all
YET, B(Y) < b: :

n o i n
Min,, Max YO HE(V,Y) + Vellus >0 3=1,...o0n, Y p. =1
v { = ’ Hs 2 U J54, oDy K ’
UJ j=1 JJ l‘J =1 J

. .

= Max Minv { b ujH§(V,Y) + Vc'l“* 20 3j=l,...5n, ¥ wu, =1,

M3 j=1 j=1

V>0, ve’ < Max.JHE(0,v) - H. } .
> 0, s M5 J( »Y) HJ(O,Y)
The bound Ve’ ¢ Maxj{Hg(O,Y) - Hj(O,Y)} is suparfluous. Consider

any sadile-point(ﬁj Jj=lys..yn, G), At such a point wa must have:

n - _ _ h
I HEE(V,Y) + Ve’ g T @HE(V,Y) + Ve
for any V> 0, V27 < Maxj{Hﬁ(O,Y) - Hj(O,Y)} .

HY(V,Y) = S H.(X. - VASXZ X, > } > H. ¢) 5= veusl.
(7, Y) apxj{ §OeY) = WISy 2 0) 2 (0,9 5=L,..uom

e may substitute and rearrange terms to obtain the inequality:

uj[Hg(O,Y) - Hj(O’Y)]'V

15



n
On the right-hand side, ﬁj >0 j=1,...,n and ¥ ‘ﬁj
_ j=1
Ve’ < Max.{H?(O,Y) - Hj(O,Y)} . Thus the bound Ve’ < Maxj{Hﬁ(O,Y)

1]

1, therefore,

J
- Hj(O,Y)} is always respected and its inclusion to meet the condi-
tions of the Min-Max Theorem is puraly formal. Cmitting the bound
we have:

n
T WSHE VO, ¥°) + Voo’ < Max MinV%
| : 5

j=1 7 J 3

n
v uHE(V,Y) + ve’)
; D 3

- . n N
V>0, “j > 0 j=l,...,n, T uj = l} for all YET, B(Y) < b.
j=1 : "

Our next step is to show that:
n
Ming ¢ T Mo HE(V,Y) + Vc'IV 2 0}
j=1 JJ

n n
= Supx’{ Yo ousHL(X ,Y)‘Xj > 0 j=l,...o0 T p.X.A. c}
J

S(X > <
5=1 J3 3] = 3=1 J33=
n _
for all “j 203=l,...n, T M3 =1 and YET, B(Y) < b. Our procedure
j=1

is similar to that followed by Owen [7] and makes use of the same
Convex Duality Theorem. The Theorem is due to Rockafellar IS who
proves it in a somewh&t more general. form than that employed by Owen.
Let F(X) be a concave function of a vector X in E'. 7The conjugate of
F is the function F*(U) of U in E" defined by s

F¥(U) = Supx{P(X) - ux'} ,
Let G(Z) be a convex function of a vector 2 in E. The conjugate of

G is the function G¥(V) of V in E" defined by :

G*(v) = It fa@) - ') .

16
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If the system X 20, XA<7Z (A is 3 real matrix of appropriate
a

dimensions) has solution in the domains (of finiteness) of F and
G, then:

Supx’Z{P(X) -e@) X2 0, xa g 7}
= Minu,\,{F""(‘U) -ev)lvz o, w3 u} .

To apply Rockafellar's Theorem we define:

n

H X .E > ..
2 Ll' j( J-,Y) 1 x~ O l"l’...’ll

- ® otherwise

0 if 2 =c¢

and G(Z)
© otherwise.

To verify that the cornditions of the theorem are met we observe,
first, that F(X) is concave in Xj j=l,...,n for ¥ 20 j=l,...5n
provided that the functions Hj(Xj,Y) are con;ave in Xj 2 0 for all
YET, B(Y) < b. But this has already been assumed. Second, the

function G(Z) is trivially convex in Z, Lastly we must show that

n _
the system Xj b 0 j=l,...,n, ¥ u.X.A. <2 has a solution in the

jzp 9373 =

set of points for which F and G are finite for any U 2 0 3=l,...5n,

n

oML
j=1

1. Since G(Z) is finite only at Z = ¢ this condition is

J
finite~valued for at least one solution for each tactic j=l,...,n.
We have assumed that Xj > 0, XjAj < ¢ is solvable and that Hj(Xj,Y)

met only if X, > O, XjAj < ¢ is a solvable system and Hj(Xj,Y) is

is finite-valued in Xj > 0 for all €T, B{Y) < b for every tactic

j=l,...,n. The conjugate functions F*(U) and G*(V) are:

17




n

n
HL (X - u. X5 X, =15 ...
L HjH;(X5%) iy UsX5]1%5 2 0 3= ’“}

F*(U) = Supx {
j(3=1
and

G¥(V) = - w”’.
By the Convex Duality Theorem:

n

n .
Su 1 1 3 = 2 > .= Y . - .
pxj,Z{j?:_.l uJHJ(xJ’Y) G(Z)‘X.J = 0 j=1, sy jzl quJAJ _<___ Z}

n n
= Mi {Sup { T OLHL(X.,Y) - 5 ULXZ|X. 2 0 j=l,...,n}
“uj,v X5 521 333 P I

+ VC'|V Z 0, vujA;- >= Uj j=l’o-.’n} fOI‘ all uj >= 0 j=l,o.o,n’

n
¥ w. =1 and YET, B(Y) < b.
=y J =

J

Each side of this equation can be simplified. On the left-hand
side a supremum always is attained at Z = c. On the right-hand side
the supremum within the brackets is a nonincreasing function of the
vectors uj j=1,...,n. Therefore, a minimum can always be found

armong the vectorr V, Uj j=l,...,n such that VujA3 = Uj 3=ly...5n0.

On the right-hand side of the equation we may omit the inequalities
VujAf > U, j=1,...,n and make the substitution:

j
‘ n n
Sup T opLHA(,Y) - 3 uXilX: 2 0 j=l,...,n
X5 1j=1 333 P L
n n
= Sup T ouLH(Xs,Y) - T pLVAIXIX: 2 0 j=l,...,np .
X; 152 M35 POt e i e

This can be simplified still further by inserting the functions
H.S:.(V,Y) j=l’ LI ) -,n:

18



n n

Sup { TOMLHAX,Y) - v u VAXSX. > 0 j=l,..;.,n}
Xj j=1 3373 j=1 3 373175 =

frer all of these simplifications have been incorpoxfated the
equaticn provided by the Convex Duality Theorem becomes’:

n n R
Su H. . . >0 9=1,... ) X.A. <
ij {jﬁl uJHJ(XJ,Y)|XJ > 0 j=1,...,n, 521 Hy¥shs c}

n .
= Minv{ T u H¥(V,Y) + Vc'lv > 0} for all
j=l J 3 -
n

2. 20 j=1,...,n, M; =1 and YET, B(Y) < b.
J j=l J -

Combining this result with that of the previous stei) vields:

n n '
T ulmEv®,v0y + v < Sup, T u.H.(X.,Y)
=1 J ] = j,uj j=1 J 3] «
oo n o n
;\-?_Oj:l,..-’n’ U..>_0j=].,...,n’ bX . =l, z u.X.A.gc
J = J = j=l J j=l JJ 2

for all YeT, B(Y) < b.

To obtain Statement 3 of the definiticn of a solution it remains
cnly to show that: ‘

n n
T ulHE(VC,Y°) + Vo’ = v uOH, (X2,Y°).
jop 33 jop 3373

Fro.: Condition 2a we obrain:

H:-_}‘(VO,YO) = Hj(xg,y% - v°A3x‘J?' §=1,...5n.

19



Multiplying by the probabilities u? j=l,...,n, summing and adding
Ve’ to each side:

n

n n
s wOHR O,y + Ve’ = v uCH.0C,Y - s WA, - el
j=1 JJ j___ 33 j._.l JJ3J

From Vo 2 0, Condition 2¢ and the previou: ly derived inequality

n
T uc?XO.A. < ¢ we may infer:
j'—"l JJ3J=

n
Crr 9. -c) =0,
j=1 J33

Statement 3 of the definition 0f & sclurior =o the constrained min-
max problem follows since B(Y’) < b is simply Condition 3b.




IV

THE SUFFICIENT CONDITIONS WITH DIFFERENTIABLE QUASI-CONVEX
FUNCTIONS

n

A somewhat stronger set of sufficient conditions may be derived for
problems with the characteristics (in addition to those already
assumed--see page 7.)

7. 2 ={vine"lyy o}

8. Hj(xj,Y) j=l,...sn are differentiable in Xj 20 §=1ye.osn

and Y 2 0.
3. H?(V,Y) j=l,...4n are aifferentiable in V3 0 and Y 2 0.

10. B(Y) is differentiable and quasi-convex in Y > 0.

if Assumptions 7 through 10 are met, the sufficient conditions of
the previous section may be replaced by the following stronger set,
Let W denote & vector of nonnegative real numbers whose elements

correspond to the elements of the resource vector function B(Y):

n

l- xo~ >_ O j::l,.;ogn, UO- pall O j=l’cu.’p, \: uo- = 1’ Yo _>_ 0’ VQ >_ 0
J = J = le J - -
W’ > 0.

2a, For every tactic j anc eacr. element xjk of Xj:_

L (xS,Y0)

(G .
-13Yl———— - Val, € 0 and
. k =
ik )
o (25,Y) iy 0 s g
"‘37}; - ajk ’,J i xjk > 3J,

, th
whora ij denotes the k7 row of Aj.




2b. For every tactic j:

n
o] (o] On 0,00
v worH.0C,¥%) - veax°
jo1 I 3%50Y) %5

n

-
v

j:

3b.

v

fe) 0. »,00 ;
Hj(xj,y°) VRIS ancljE
(o] (o] O, +¢.,0, ) O, » » . ;O ‘
[H. (X2, Y°) - vPa’xC (XC - x%° if W9 > 0.
u LR (X5, Y7) %573 HJ‘XJ’YO) VAAXyT it uy

n n

VL s 0%, -1 >vi ™ u%%%. - c) for all V> 0.
j=p 37373 = R M e ;=

For each element Yk of Y:

J L k
o 0 - ’

nooG OG0 e

z. u.++v1 % =0 1fYk>0.

j=1 4 k i

(o} O ’ O ’ -

wie(y®) - b1 > WB(Y®) - b]* for ail W3 O.

oo

T ujH:;'j:'(V,Y) + Ve’ is quasi-convex in V> 0 and Y2 0 and
3=1

one of the following:

n

. 0,0, _

. 451 qujP\j > # 0
no L BHL(XE,Y0) |

b. ¢ u? —d~3—— >0 for at least one element Y, of Y.
. J oY, k
j=1 k
no OHL(XZ,Y7) |

c. T u; —lg?‘l—— < 0 for at least one element Yk of Y
=1 - i :

and there exists a Y2 C, B(Y¥) £ b such that ?1‘{ > 0.
nog oH. (x2,Y°) :
d. v w? —L_Jd—— #0 for at least one element Y, of Y
O | oY k
j=1 k
and the functions H‘-’J:‘(V,Y) j=l,...sn are twice differentiable
in the neighborhood of VO,YO.
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Bilhaked

If the functions H?(V,Y) j=l,...,n are all convex in V> 0 and Y 2 O,
Condition 4 may be omitted.

In Condition 1, Y’€T has been replaced by et 2 0 and the non-
negativity condition w° > 0 has been added. Conditions 2b and 2c
are unchanged. The new Condition 2a may be readily derived by
applying a familiar lemma. Let F(X) be a differentiable concave

function of a vector X in the region X 2 0. Let x° > 0 be chosen such
that for each element Xk of X:

o (o]
BEL o0 ara EA=0 5050,

k k

Then X° maximizes F(X) in X 2 0. To ohtain our new Condition 2a, let:

Opoye
F(X) = H (X,,Y°) = VOa%XS .
(X) = Hy(X;,¥) = VORIXS
According to the lemma X3 maximizes H (X ,¥°) - VOALX! 2 0, d.e.,

o L O, e.,0 O O, oy,»

AXS,Y - VPALXS > H.(X.,Y') - VALX, for all X. > 0.
Hy (X5 ¥) K5 2 BT 373 =

Since this must hold for all tactics j=1,...,n, the new Condition 2a

implies the old one.

To derive the remaining conditions (and the inequality w°® 2 0)
we must first evaluste the derivatives of the functions Hg(V,Y)

.

j=1,...,n in the region of (VO,YD). This is done by making use of
an inference from Conditiorn 2a. For every tactic j and each element
X., of X.:
jk 3
OH(XO,YQ) O_» Q
-V ajkj Xjk = 0.

Take the total derivative of Hf(v,Y) ar (VO,YO):

jk

aH, (X2, ¥°) | o, (X3,Y°)
4 =L- - O, s_ O 4

<3

g




2H.(X2,Y°) -
vhere -—JLT#}——-denotes a vector of partial derivatives with
i

o

respect to the elements of Y. It is clear that the maximum is

M. (x2,¥)

preserved when dX., is nonzero only if -;HFJL—-—— - V%, =0,
jk 0 5k jk ¢
dH.(X2,7°)
DY

1}

Theref ay’ - A%x°%%av,
erefore, dHJ JAJ ’

£71 0 . o

j::l,o-.’n.

oY bY
anc
3%V, Y%) o
—J—S\T— = - )’.jAj J=l,...,n.

The nonnegativity conditior W° > J addec tc Condition 1 and our
rew Conditions 3 and 4 all proceed from & Ihecrem by Arrow and
Enthoven [1]. The Theorem is stated here in z form appropriate for
constrained minima and quasi-convex functions. Let F(X) be a
differentiable quasi-convex function of the vector X, and let‘G(X)
be a c¢ifrerentiable quasi-convex vector function, both defined for
X 2> 0. Lect x° and »° (a vector) satisfy the Xuhn-Tucker Conditions,
specifically:

x° 2 0, 1

o o1
DE (X o | 9G(x )]
%i_l + ) [——OX

0 [cg)((x") 5O [OGSZO)] ] =0

2° [6(x°)1° = ¢,

R (o] o
where 3%§£-l denotes a vector and 0G(X ") a matrix of derivatives with

respect to the elements of X, and let one of the following conditions

°s 0

nv

nv
o

be satisfied:
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) e 0 for at least one element )(k of X;

(o}
b. 1—”?)(()( e < 0 ftor at least one element xk of X where there

exists an X > 0 with X > 0 such thdt G(i) < 0;

(#]

o
L) # 0 and F(X) is twice differentiable in the neighbor-
hooc of XO;
d. F(X) is convex.
Then X° minimizes F(X) subject to X 2 0 and G(X) € 0. To apply
Arrow and Enthoven's Theorem let:
2 o
F(X) = T u:H%(V,Y) + v’
jop 33
and G(X) = 3(Y) - b. Both F(X) and G(X) are assumed to be quasi-convex
in V> 0and Y2 0. The Kuhn-Tucker Conditions for a constrained

mininum are:

n MSE(VO,Y0) no_ eHE(VC,YO) :
b u?J—-——+c>=O, ;:ug—ls-——+w°[9§%fl]>=o

j=1 v j=1 Y ,
no VO, YY) _ n o oHE(VP,Y0)
Vo[jiluj_lw—+c =0, ¥ 521”5_1'37__+w0

eI

o 3y’) - ) = 0.
S.ubstituting for the derivatives of H"’J:’(V,Y) j=1,...,n the Kuhn-Tucker

Conditions may be rewritten as:



n o, (X%,Y°)
5§ e (Al o
a"dyo[n 2. (x2,¥°) ’

o [ | .
E1 uJ oY +u [ ] ] =0
worB(Y°) - b’ = :

Conditions 1 through 3 of our new set imply tﬁat the Kuhn-Tucker
Conditions for a constrained minimum are satigfied. Condition 1
includes the nonnegativity conditions 'ad ;,O,EYD > 0. Condition 2c
is equivalent to: El

ni

%A, -c<0 and Vo[ ¥ X%A., - ¢]’ =o0.
J)_:l“JJJ [_l“JJJ !

Condition 32 may be used to derive:

n aH(x°Y°) w°[_§-yi-] .

and

on.(x9,y°) 1 |
Yo [J r 3 -J-?g%-—-+-w°[$§%%fiq ] =0,

and wo[E(Yo) - b} =0 follows from Condition’ 3b.
The remaining stipulations of Arrow and Enthoven's Theorem apply
to the constrained minimization problem as follows:

"1.‘3

nooos n OH.(XQ,Y?)
a. <~ u;x.aﬂ. -¢c, <0 or T g —> 0
j= 33 nj j=1 YK :
for at least one element Vh of Vor Y% of Y [ahj denotes

the hth row of Aj];
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‘ n n oH.(X2,¥°)
be % u9%Ca h -o,. >0 or ,v,u‘?—lmi—<;o
“"l J J h j:l J k
for at least one element Vt of V or Yk of Y where there
exists a Y > 0 with { > 0 such that B(Y) < b'

7 no o1 (X2, Y°)
"- - x (.\ - C 0
S LMt e PO e .El M3 TTEY,
for at least one element Vh of V or Yk of Y ahd the

functions dJ(V »Y) J—l,...,n are twice dlfferentiable in the
neighborhood of (V°,Y°);

#0

n

¢. The expression T uJHJ(V ,Y) + Ve’ is convex in V> 0 and
j=1 T

Y > 0.

Condicion 4 is easily shown to be equivalent to a, b, and ¢ providing
n
the expressicn ¥ MJH *(V,Y) + V¢’ is quasi-convex. The fact that
‘ i=l
Conc¢iticn 4 is expendable if the functlons H*(V Y) j=1,...,n are
vonvex is implied by d.

Therefore, cur new set of conditions imply that (VO,YD) minimizes
143 :
- u?ﬁ?(V,Y) + Vo’ subject to B(Y) < b, V>0and Y> 0, i.e.,
j=1 - - - N

n 1 n
= WSHEO,Y) + V% ¢ v o (VY)+Vc
jm 33 5=1

J
for all VZ_. o, Y>___ 0 and B(Y) g b
and

B(Y") < b

ich is Condition 3 of the previous Section.
Befora concluding this Section some observations should be made

about the properties of the expression E M H*(V Y) + Ve’ in the
j=1
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region V 2 0, ¥ 2 0. Condition 4 requires that this expression be:
quasi-convex, i.e., every set RE defined as

n
Ry = {V,Y | s uCHH(V,Y) + Ve’ < E}
j=l J ] -

must be convex. If the functions H?(V,Y) j=l,..§,n are all convex,

then by virtue of the fact that u? > 0 j=1,...,n, the expression
n

Z u?H?(V,Y) + Ve’ must also be convex, However, the expression
j=1

is not necessarily quasi-convex if the functions H?(V,Y) i) AP o}
are each quasi-convex, To establish quasi-convexity of

n
T u?H?(V,Y) + Ve’ the following result fr m Arrow and Enthoven [1]
S=] : 4

o

may be used. A function F(X) of an n-dimensional vector X is quasi-
convex if D, < 0 for all r=l,...,n and for all X where Dr is the

tordered determinant:

0 bF(X)/le ....bP(X)/er

= 2 2
D, = bF(X)/bXl ¢ P(X)/lele cead F(X)/lebXr

DECK) /oK, BTF(XI/BNLBKy  on . DECK)/X DK |

If it is possibles to show that the bordered determinants for the

n

function F(X) = 7 u§H§(V,Y) + V¢’ have the desired sign every-
j=1

where in the region V > 0, Y > O then our Conditions 1 through 4 are

sufficient for & global solution to the constrained min-max problem,

If quasi-convexity can only be demonstrated in the vicinity of

(VO,YO), then a local solution has been found that may or may not

also be a gleobal solution,
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v
A MODIFIED DOUBLE LAGRANGE MULTIPLIER METHOD

In general, Lagrange multiplier methods replace constrained problems
with unconstrained probiems by reversing the computational roles of
resource levels and imputed resource prices. Such methods are
"fail-safe™ if it is possible to show that a solution to the uncon-
strained problem always solves a constrained problem for an as-
certainable pair of resource vectors. The value of the method as a
procedure for arranging computations is entirely attributable to the
fact that explicit constraints can frequently be an expensive compu-
tational nuisance.

A "fajl-safe double Lagrange multiplier method for constrained
min-max problems with mixed strategies that conform to assumptions
1 through 10 begins with an arbitrary choice of the multiplier |
vectors V > 0 and W 2> 0. Next, strategies X? j=1l,...,n for the

maximizing player's tactics, probabilities ug Jj=l,...,n and a
strategy ¥° for the minimizing player are found such that:

n
1. x>0 3=1,e.0n, 12203214050, & p0 =1, Y% >0
A B j= j=1 J =
2a, For every tactic j and each element Xjk of Xj:
o
3. (x2,¥°)
—2 _ _Va’ <0 and
bX-k Jk'—
J
oH. 02, Y°) . o O e
-—JBXJ-——— -Va: = i >
3k 5L jk
where ajk denotes the kth row of Aj.
29
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!

For every tactic j:

A%x%* ]

<t

z H.(xX2,¥°) - > H.(X° -7 a’x°%" and

21 ug (506, 1) #3712 105 - VA" an

n (o] OYO o (o} OYO o (o] (@]

by . [H. (X -~ VASXE] = H.(S - VASXY? 4 . > 0.
i My L J( 50 ) 3%3 ] HJ(XJ, ) - AJXJ if us 0

For each element Yk of v:

n dH, (X2, Y%) 0.1
o) o | 0B(Y - .
ST e e g [_ﬁ_l] -0 it o0,

The resource vectors ¢ and b are determined after the fact according
to the formulae:

A. and b = B(Y")

and the solution is examined fovverify that the problem is not de-
generate in the sense that Condition 4 is not satisfied. It should

be perfectly apparent that the strategies X i=l,.. 50, probabilities
u? j=l,...,n, the strategy ¥° , and the vec*ors v and W jointly satisfy
the strong set of sufficient conditions of the previous Section.

The procedure is an extrapolation to constrained min-max problems
of Everett's generalized Lagrange multiplier method. In the special
case of a single tactic the procedure reduces to the. double Lagrange
multiplier method proposed by Pugh, The probabilities then drop
from view and Condition 2b may be omitted.

At this point a rough intuitive description of the method may
be helpful. The Lagrange multiplier vectors V and W bear interpre-
tation as prices to the maximizing and minimizing players on their
resources. These vectors provide a priori rates at which the players
may convert additional units of resources to changes in the expected
value of the payoff function. The solution value of the Lagrange

function:
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7 WCH., (x° o) - ° & wOASXS + Wl [B(Y°)Y
j=p 93 g=1 3373
also has an economic interpretation. The quantities V° Zl Mo AJXJ
i=

and wo[B(YD)]' are the opportunity costs in payoff units of the
resources used by the maximizing and minimizing players, respectively.
The value of the Lagrange function is the expected payoff to the
maximizing player modified by subtracting the opportunity cost of
the resources he must expend to gain this payoff and by adding the
value of the defense resources used to limit the payoff

The strategies X j=i,...50n, the probabilities “3 3=y 4.4y
and the strategy Y° may be viewed as an equilibrium pair in a
restricted sense., The maximizing player's mixed strategy is optimal
against the minimizing player's strategy but the reverse relationship
holds in only a partial fashion. The strategy v° is not necessarily
strictly optlmal agalnst the specific strategies X mixed with probab-
ilities u . Rather, Y is oncimal against a spec1f1c probabilistic
mix of eff1c1ent tactical responses. That is, the fixed probabilities
u? i=l,...sn apply to strategies Xj j=l,...sn that are continuously
altered in response to changes in the strategy choice Y and the imputed
prices of the minimizing player's resources V. These alterations
have the effect of maintaining the strategies Xj i=l,...sn 385
economically efficient uses of resnurces against the minimizing
player's strategies, The specific strategies X —l,...,n are
efficient given the vector ¥ and the solution strategy ¥°




VI

ON SUITABLE PROBLEMS

The modified double Lagrange multiplier method does not constitute
a uniformly powerful approach to all constrained min-max problems
with the requisite characteristics. Since resource levels are
treated in computations as an output rather than as an input, the
methoa is best suited to problems with only small numbers of con-
straints and to investigations of solutions over a range of resource
levels, Generally, the computations required to yield an acceptable
body of results for a problem will tend to increase geometrically with
the number of constraints. _

The method is principally useful as a means for addressing
problems that may be partitioned by "cells™, Let h =1,...,m be
an index of cells, Each cell is assumed to possess, individually,
all of the components of a constrained min-max problem with mixed
strategies. For the hth cell, then, we denote these components
with superscripts as follows:

. h
J=lseeesn
xh

an index of tactics for the maximizing player.

5 a strategy for the maximizing player's tactic j.
h h
J

M ~ & probability of use of Xj.

Yh - & strategy for the minimizing player.

H?(X?,Yh) - a payoff function for the tactic j.

X?A? - resource use by the maximizing player for tactic j.

[»+]
[=3
~
%
~r
[}

resource use by the minimizing player.

A tactic for the maximizing player over all cells is a specific

combination of tactics for each cell., A complete list of such
overall tactics would consist of every possible combination of cell
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tactics and can be quite long even for very simple problems. Probabil-
ities for these overall tactics may be retrieved from the probabilities
assigned to the cell tactics in any way that preserves the weights ug
as conditional probabilities. For example,

h
M: = H M

1.2
f . = { LI ] }
5 ey 3 or XJ X5 ,X seesyXKy

corresponds to an independent random drawing of the cell strategies
Xh according to the probabilities uh. An overall strategy for the
minimiz:.ng player is the composite strategy Y = {Yl Y2 ,...,Ym} . The

expected payoff over all cells is the sum of the expected payoff in
each cell: '

n m n
o () = T3 uhHh(Xh )
j=1 9 h=1 j=1 I

and the resource constraints of the overall problem are:

n m nh

Jhyhah
T MXA = T F ulXA
ET R Bl A B’ o’ H3%% E

and

B(Y) = T B hevty < b.
h=1

The modified double Lagrange multiplier method makes it possible

to solve partitionable problems cell by cell. That is, the derivation
o} (o}
of the strategies x? j=l,...,nh, the probabilities u? j=l,...,nh,

and the strategv Yho for any one cell is completely separated from
the derivation for any other cell. This fact often makes it possible
to solve even very large constrained min~max problems by partitioning
them into cells such that the application of the method in any single
cell is straightforward.

Equally important, an expectational interpretation of the payoff
function and the maximizing player's resource constraints is least
: likely to be objectionable with problems that may be partitioned.
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Suppose that the maximizirng player's solution implies an independent
random drawing of strategies in each cell, This random process
establishes probability distributions for the actual payoff and re-
source use by the maximizing player that would result from a play of
the game with the solution strategies. In general the standard
deviations of these probability distributions will tend teo diminish
relative to their means as the number of cells is increased. This
consideration militates strongly in favor of highly separable problems
in which the probable variations in payoff and resource use become
insignificant in relation to the expected values.

The modified double Lagrange multiplier method is a general
approach to formulating and solving constrained min-max problems.
It is not a computational algorithm in the same sense as the simplex
algorithm or Newton's method. In deriving solutions that satisfy the
Coraitions of the previous section, the analyst is left to his
own devices. The method applies equally well with clever mathe-
matical derivations and unsubtle searches on a digital computer,
The choice of a computational route for any particular problem
must be made on the basis of the specific characteristics of the
problem. Moreover, we have provided no grounds to warrant the
belief that solutions to all suitable constrainad min-max problems
can be found by applying the method. The conditions we have derived
are sufficient but they may not all be necessary.
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VII
AN ABM/SHELTER DEPLOYMENT PROBLEM

A simple ABM/shelter deployment problem can be solved as an illustra-
tion of the essential features of the modified double lagrange multi-
plier method. The game pits warheads against terminal interceptors
and blast shelters allocated to cities, The maximizing player's
strategies are targeting plans in which each of the cities is assigned
a specific number of warheads. Strategies for the minimizing player
consist of assignments of interceptors and shelters to cities. The
interceptors are taken to be perfect in the sense that any warhead
engaged by the defense is certain to be destroyed. We shall also
assume that each shelter provides one resident of the city with com-
plete protection from all weapons effects.

The payoff of the game is the total number of fatalities anti-
cipated from an attack. 1In any single city fatalities occur among
the unsheltered population and are computed as an exponential
function of the number of detonating warheads. Both players are
constrained by a single scarce resource, In the case of the maximizing
player, his arsenal is presumed to consist solely of ballistic
missiles capable of delivering only a limited number of warheads.

The defense is restricted to deployments that do not require expendi-
tures in excess of a given hudget. His cost function is linear.
Since the maximizing player observes the defense before choosing a
targeting plan we have a constrained min-max problem. (This formu-
lation of the ABM/shelter deployment problem is not intended to be
more than illustrative. An application of the method to a more
sophisticated and realistic version of the problem has been made
elsewhere by the author,)

The problem may be partitioned by cities. Let h=1l,...,m be an
index of cities. For the hth c.ty the maximizing player exercises
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one of two tactical optiors. He may choose not to attack the city

at all., This we shall call the null attack, The second tactic may
be labeled an exhaustion attack. 1In an efficient use of this tactic
the defense's interceptors are exhausted and the maximizing player
continues to target warheads until the last varhead is just worth the

damage it will cause. Mathematically, the components of the game for
the hth city are:

Xh - number of warheads for the exhaustion attack,
uh - probability of using the exhaustion attack,
Yh - a two-element vector as follows:

Y? - the number of terminal interceptors

Yg - the number of blast shelters,

Ph - the population of the city,
sh - a damage function parameter,
a - cost per interceptor, and

B - cost per shelter.

The payoff function for the null attack is:

H?(O,Yh) =0
and for the exhaustion attack:
(0 if P" - Y <0
“g(xh"}‘) =Y,.h h,.h h P
V(P - Y;)[l - exp {- s (X" - Y?)}] if P - Yg > 0.
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These twec functions are graphed in the figure below for Ph Yg >0
and Yh > 0: i
"h
';~ - v; P Sy G GED AP AD SIS SEE CMS GEl wEs S - G S S =y
/2((",\:
,r’-
/ H';(O:Yh)
[1] =

1" - V) [1emplsY) )

Pa-s7102

We have no vector X? for the null attack, so:
HE(V,Y") =

For the exhaustion attack we have:'

H*(VX)‘)"{O e - y’ggo
L Supyh {(Ph - Yhn -{exp st - v }] - v 5 o}
- if Ph - Yg >0

If V = 0, the supremum takes the value (Ph - Yh); if V> 0, the
suprenum is a8 maximum, Differentiating with respect to xh yields:

oM, ¥ -

bxh =3 (P Yh) exp {-s (x Yh)}
At a maximum: |
sh(Ph - Yg) exp{ -8 (x } |
PN - ) exp {as” ) -v=ouxso
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Therefore:
0 £ P"-co
Hg(V,Yh) = (Ph - Yg)tl - exp{shYg}'] if 0 < ph-Yg §VeXp{-sth}/sh
(" - v3)-v1s10g{s"E"- 1) v 1/ P
if Ph - Yg 2 Vexp {-shY?'}/sh.
The expected payoff in the nation as a whole is the expression:

0 if B - vy <0
. <
hﬁ uh _ |
" - 0 - op{-s"0" - Y1 ar B - > 0,

The maximizing player's expected use of warheads is:

m

£ Mt

h=1

and the cost of the ABM/shelter deployment is the linear expression:
m .
T [uY? + aYgl.
h=1

It may be readily verified that the problem has all of the character-
istics (Assumptions 1 through 10) that are necessary for an eppropriate
application of the modified double Lagrange multiplier method.

To apply the modified double Lagrange multiplier method we select
rultipliers 0> 0 and @ > 0 and then choose strategics and probabili-

ties that constitute an equilibrium pair in the restricted sense of

the previous sections., Omitting the superscript h, Cor-iiviuns 1, 2a,
2b, and 3a reduce to the following system of conditional equaticns and
inequalities for each city: ‘




x° =0 if (P-¥)-0/s < 0 i
X° = log{s(P-Yg)/V}/s + Yg if (P-Yg)-V/s >0
WO =0 if (P-Yg) - 00+ 1og{s(P-Yg)/v}]/s - VYi <0

0gu’ gl if (p-yg)-vtl+1og{s<p-vg)/v}J/s -9 =0
=1 if (P-yg)-9[1+1og{s(P-Yg)/V}J/s - VYg >0
0if WO [-V1+Wa>0

| =4
O

oS
]

<
nv

0if W [~v1+Wa =0
0 if u° [V/S(P-Yg)
0 if u° [V/s(p-yg)

0» O+
1}

<

1] +Wg >0

t\)'<0

1] + Ws = 0.

nv

There are five distinct types of solutions to this system dis-
cussed below as cases 1 through 5.

Casc¢ 1: sP< ¥

X =0

W =0 1
O - ]
Y, =0

o _

Yy =0

. (x°,¥°) = 0
uOXO =0 ’
a&l + BYg =0,

The undefendad city is not an attractive target to the maximizing
player, Therefcre, there is no reason to install interceptors or
build shelters. In all of the remaining cases, the undefended city
presents a wortiwhile target to the maximizing player.
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Case 2: sP > ¥, Wa >V, W > 1~ V/sP

x° = log{sP/V}/s
W =1
20

uHN(X%,¥%) = P - U/s
uox® = log{sP/V}/s

o] -
aYl + BYg = 0,

Although the city is subject to attack, the minimizing player finds
that it is best to leave the city undefended. The reasons for this
are, first, that the opportunity cost in lives of an interceptor,

Wa, exceeds the value in lives of the single warhead it destroys, V.

Second, the opportunity cost in lives of a shelter, Wg, exceeds the
expected saving in lives of installing the shelter, 1 - 7/sP.

Case 3: sP 2V, W >0, W <1 - V/sP

x° = log{l/(l - we>}

(o]

ueo=1
8-
Yg =P - U/s(1 - WB)

u°H2(X°,Y°) = W8 /s(1 - Wa)
WX = 2ogf1/1 - W83}

ay‘{ + ev‘; = 8P - U8/s(1l - P8).
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In this case the blast shelters, but not the interceptors, are worth
the cost., The optimum number of shelters minimizes the Lagrangian:

O = -
Differentiating at Y = Y° we find that: -
uo[ -1+ V/s(p - Yg)] +Wg = 0.

At the margin no increase or decrease in the number of shelters leads
ultimately to a decrease in the overall payoff. Since the offense may
move warheads among cities to maintain a marginal return of V per war-
head, the net number of lives saved by an additional shelter in tne
city is [1 - U/s(P - Yg)]. This just balances the opportunity cost in
lives of the shelter, WB.

Case 4: sP 2 U, Wo < V, WB > (Wa/¥)(1 - TU/sP)

X° =P/ - 1/s

u = R /v

Yi =p/V - [1 + 1og{sP/V}J/s
Yy =0

o]

WHy(X%,¥7) = (Ra/T)IP - T/s]
ux® = (Wa/T)P/T - 1/s]
aYg + syg = oP/V - a[l + 1og{sP/V}]/s.

The city is allocated interceptors but not shelters since the
opportunity cost of a shelter, WB, exceeds the anticipated saving
in lives from an attack, 1 - ¥/sP, multiplied by the probability
of an attack, ®a/¥. The optimum number of interceptors, Y°, is

1
determined not by a margin calculation as in case 3, but is set
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instead at a level that makes attacking the city at all an indif-
ferent proposition to the maximizing player. That is:

Hi(\?,Yo) = H"é"(V,Yo) =0,

The null attack and the exhaustion attack tactics are probabilistically
mixed with probabilities (1 - Wa/¥) and Wa/V such that neither an
increase nor a decrease in the number of interceptors will reduce

the value of the Lagrangian:

(1 = OMET, V) + 1PHET,YP) + Fa?

Differentiating with respect to Yl and evaluating the derivative at
Y° we have:

H 37, -

: o MHE@,YY) w_&) -
| (5

A rough intuitive explanation for the choice of uo = Wa/V may be
provided by considering the role of the probability uo in ascertaining
the resource level c. If we choose pu < Wa/V, then the resulting
arsenal is not sufficiently large to discourage a defender from

decreasing the number cf interceptors in every defended city. On

T

the other hand u > Wo/V yields a total number of warheads so large
that an increase in the number of interceptors at every defernded city
must produce a return in the imputed value of intercepted warheads
that on the average exceeds Wo per additional interceptor,

Case 5: sP > U, Wa < U, W8 < (Wa/U)(1 - ¥/sP)

A

o

X~ =a/s(a - V8) - 1/s
uo = W /V
Yg =a/s{a -~ V8) - 1/s - 1og{a/(a - Ve)}/s
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Yg =P - Va/s(a - UB)

Wy (X%, ¥0) = (Wo/)(Ta/s(a - T8) - /5]
uox° = (@a/Mla/sta - T) - 1/s]

ay + BYO =8P - a logla/(a - VB)}/s.
1 2

This last and most interesting type of solution is a mixture of active
and passive defense systems. An heuristic explanation of the
solution is a straightforward composite of the descriptions provided
for cases 3 and 4.

The various values of the multipliers and their association with
the five types of solutions are depicted in the figure below,

Case |

Once a number of warheads, th, probability, uho’ number of

interceptors, Y?o s and number of shelters, Ygo, have been determined

for every city, the last step of the modified double Lagrange multi-
plier method is a simple summation of expected payoffs, expected use
of warheads, and defense expenditures. In the normal course of an

i operations research exercise this would be repeated for many combina-
tions of values for the multipliers V and W,
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Unfortunately, it is only possible to show that the strategies
derived using the modified double Lagrange multiplier method are local
solutions to the ABM/shelter problem, An examination of the bordered

n

determinants for the expression F(X) = T u?Hg(V,Y) + Ve’ indicates
j= -

they will all be negative wherever:

o -5 uh°{- 1og{sh(Ph - Yh)/v}/s,h - ¢ 4 xR }g 0.
BV n 2 1 =

This derivative is equal to zero at the solution point V = U, v = ¥°
but is not generally nonpositive over the entire region V > 0, Y 2 0.
It can be easily shown that part c¢ of Condition 4 is met if at least
one city is both targeted and defended.
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CONCLUDING REMARKS

There are three major criticisms that can be made of the approach
to constrained min-max problems offered in this paper:

1. The wrong problem has been solved. A solution to a con-
strained min-max problem that implies a mixed strategy for the
maximizing player can have no direct application.

2. Ten strong assumptions are needed to obtain the set of
sufficient conditions that finally provide the basis for the modified

double Lagrange multiplier method. Also, quasi-convexity of the

n

expression I u?H?(V,Y) + V" (Condition 4) is not usually easy
j=1

to establish,especially over the entire region V > 0, Y > 0.

3. As a practical matter, the use of the method is limited to
partitionable problems with few constraints and to crude explorations
of solutions over a range of resource levels.

My response to these criticisms is:

1. The right problem has proved to be quite difficult to
address on a practical level with existing computational algorithms.
The introduction of mixed strategies and the redefinition of an
equilibrium pair appears to me to be the least damaging alteration
that leaves a readily solveable version of the constrained min-max
problem, Solutions to this wrong problem will often provide close
approximations or at least bounds for solutions to the right problem,

2. The ten assumptions we have used are probably not the only
assumptions on which a Lagrange multiplier method for constrainad
min-max problems can be based. For example, a fail-safe version of
the method could proceed directly from the first set of sufficient
conditions providing Condition 3a of Section III can be weakene to:
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n
T uOHE(V®,Y°) + woIB(Y) T
j=l J ]

n
< % u‘J?Hj(vo,Y) + WO[B(Y)]" for all YET.
j=1

I doubt that there are many problems for which this cannot be done.
Also, it may be possible in many circumstances to define the
functions Hg j=1,...,n more generally as:

% = - ’
HECV, ) Supxj{Hj(xj,Y} VIC,(X,)] |xjesj}.

Further research may also reveal that Condition 4 of Section IV may

be weakened particularly with respect to the quasi-convexity of

n

z u?H?(V,Y) + Ve’ over the entire region V> 0, Y

0.
j=1

nv

3. The practical limits on the usefulness of our method are
about the same as those that apply to Everett's original generalized
Lagrange multiplier method. Many problems of interest are nct
well-suited for applications of Lagrange multiplier methods. How-
ever, some of the problems that are well-suited are just about
impossible to address in any other way. For example, the author
has been engaged in a study of mixes of area ABM, terminal ABM,
and blast shelters to defend the nation's urban population from
strategic missile attacks. The admissible offense strategies involve
a variety of weapons and decoys deployed to leak through, suppress,
exhaust, and detonate above the terminal defenses. Despite its
apparent complexity the problem can Le formulated &8s a min-max
problem with constraints on the offense use of throw weight and the
defense use of budget funds. The problem can be partitioned by
cities and rapidly and repeatedly solved f»r different offernse and
defense resource levels simply by varying two multipliers. For
entirely practical reasons no other approach to this constraired
min-max problem is currently feasible,
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